

1. Pete planted a tree and watched it grow for several months. Each month, he recorded the height of the tree, in inches. Pete used the equation $y=3 x+16$ to represent the height of the tree (y), in inches, after x months of growth. What does the 3 represent in Pete's equation? Write the letter on the line.
A. The tree grows 3 inches every month.
B. The tree takes 3 months to grow an inch.
C. The tree was 3 inches tall when it was planted.
D. The tree was 3 months old when it was planted.
2. Miranda will bake at least 4 pies for the bake sale. She is allowed to provide up to half of the total of 30 pies needed for the bake sale. Write a compound inequality to represent the number of pies (p) Miranda may bake.
3. An inequality is shown. How many whole numbers from 1 to 10 are solutions to the inequality?

$$
4.5+1.8 x<18
$$

$k=$
4. The summation has a value of 77 . What is k ?

$$
\sum_{n=k}^{25} n-11
$$

5. The graph of a line is shown. Point B is on the line. What is the area, in square units, of rectangle ABCD?

Answers

Questions are worth 2-2-2-4-4 points respectively.

A
1.

$$
4 \leq p \leq 15
$$

Also accept:

" $p \geq 4$ and $p \leq 15$ "
\qquad
7 3. $4.5+1.8 x<18$
$1.8 x<13.5$
$x<7.5$, so the whole numbers $1-7$ satisfy the inequality

$$
k=19
$$

4. $(25-11)+(24-11)+(23-11)+(22-11)+(21-11)+(20-11)+(19-11)=77$

16 un. ${ }^{2}$
5. In order to determine the height of the rectangle, we need to find the y-value of point B. The equation of the line is $y=2 / 3 x+2$. The x-value at point B is 5 .
$y=2 / 3(5)+2 \rightarrow y=10 / 3+2 \rightarrow y=16 / 3$
So, the height of the rectangle is $16 / 3$ units. The width of the rectangle is 3 units. The area of the rectangle is $(16 / 3)(3)=\mathbf{1 6}$ square units.

1. What is the remainder after dividing 450 by 7 ?
2. When Miriam was born, her godmother opened a bank account for her and deposited \$3. Each year, Miriam's godmother doubles the amount of money in the account. How much money does Miriam have in her account after her $8^{\text {th }}$ birthday?
3. A linear function has a y-intercept of $\left(0,4 \frac{1}{2}\right)$ and a slope of $\frac{1}{4}$. What is the x-intercept of this function? Write your answer as an ordered pair.
4. What is the median of this data set?

$$
\frac{1}{5}, 0.2, \frac{3}{4}, 0.6,0.35, \frac{7}{10}
$$

5. If $f(x)=x+|x|$, find the distance between points $A(3, f(3))$ and $B(-3, f(-3))$. Write your answer in simplified radical form.
\qquad

Meet 4 - Event B

Answers

Questions are worth 2-2-2-4-4 points respectively.

\qquad 1. $450 \div 7=64 \mathrm{R} 2$

Also accept: 2/7
$\$ 768$
2.

Year	0	1	2	3	4	5	6	7	8
Amount (\$)	3	6	12	24	48	96	192	384	768

$(-18,0)$
3. Equation of line: $y=1 / 4 x+41 / 2$
x-intercept occurs when $y=0$
$0=1 / 4 x+41 / 2 \rightarrow-41 / 2=1 / 4 x \rightarrow x=-18$
0.475
4. $\frac{1}{5}, 0.2, \frac{3}{4}, 0.6,0.35, \frac{7}{10} \rightarrow 0.2,0.2,0.75,0.6,0.35,0.7 \rightarrow$

Also accept: 19/40
$0.2,0.2, \underline{0.35}, 0.6,0.7,0.75$
$(0.6+0.35) / 2=0.475$
$6 \sqrt{2}$
5. $f(3)=3+|3|=3+3=\underline{6} ; f(-3)=-3+|-3|=-3+3=\underline{0}$

So, $\mathrm{A}(3,6)$ and $\mathrm{B}(-3,0)$.
This produces a right triangle with base 6 and height 6 .
Therefore, $6^{2}+6^{2}=d^{2} ; 36+36=d^{2} ; 72=d^{2} ; d=\sqrt{72} ; \boldsymbol{d}=\mathbf{6} \sqrt{\mathbf{2}}$.

Meet 4 - Team Event 2019-20

Questions are worth 4 points each.

No calculators allowed

\qquad 1. The first term of a geometric series is 4 . The common ratio of the series is 3 . What is the sum of the first 5 terms of the geometric series?
mi
2. Kemba drives 6 miles directly northeast, then 9 miles directly southeast, then 34 miles directly southwest, then 45 miles directly northwest, and then finally 28 miles directly northeast. How many miles is Kemba from where he started?
3. What number comes next in the pattern?

$$
10,12,15,20,27,38,51, \ldots
$$

in. 4. A kite is shown. What is the perimeter of the kite?
5. The mean height of all the players on a soccer team is 65 inches. There are exactly 3 players on the team whose heights are less than 65 inches. What is the minimum possible number of players on the soccer team with heights greater than 65 inches?
un. 6. Points A, B, and C are plotted on a coordinate plane.

- Point \mathbf{A} is located at (m, n).
- Point B is located at $(m+3, n-2)$.
- Point C is located at $(m-1, n+4)$.

What is the distance, in units, from point B to point C ? Write your answer in simplified radical form.
$n=$ \qquad 7. The table shows several values of a linear function. What is the value of n ?

\boldsymbol{x}	1	3	6	8
\boldsymbol{y}	3.5	-1.5	-9	n

8. Abby sells holiday wreaths for a fundraiser. She sells small wreaths for $\$ 16$ each and large wreaths for $\$ 24$ each. She sells all 30 of the small wreaths. What is the minimum number of large wreaths Abby must sell to raise at least $\$ 1,500$?
9. What is the mean absolute deviation of the data set?
$3,7,8,12,12,14,15,17$
10. What is the equation of the line that is perpendicular to $y=-\frac{1}{3} x+5$ and passes through (-4, -6)? Write your answer in slope-intercept form.

Answers

Questions are worth 4 points each.

484

1. $4+12+36+108+324=484$

36 mi
2. This may be easier to think about if the compass is "tilted" such that $N E=N$ (up), $S E=E$ (right), $\mathrm{SW}=\mathrm{S}$ (down), and $\mathrm{NW}=\mathrm{W}$ (left). Therefore, Kemba walks 6 miles up, 9 miles right, 34 miles down, 45 miles left, and 28 miles up. His total up/down gain is $(+6)+(-34)+(+28)=$ 0 . His total left/right gain is $(+9)+(-45)=-36$. So, Kemba just needs to walk 36 miles right to get back to where he started.
68
3. The pattern is increasing by consecutive prime numbers.
$10+\underline{2}=12 ; 12+\underline{3}=15 ; 15+\underline{5}=20 ; 20+\underline{7}=27 ; 27+\underline{11}=38 ; 38+\underline{13}=51 ; 51+\underline{17}=68$
54 in.
4. Length of top left side, top right side: $\sqrt{8^{2}+6^{2}}=\sqrt{64+36}=\sqrt{100}=\mathbf{1 0}$

Length of bottom left side, bottom right side: $\sqrt{8^{2}+15^{2}}=\sqrt{64+225}=\sqrt{289}=\mathbf{1 7}$ $10+10+17+17=54$
1
5. Technically, only 1 player on the team needs to have a height greater than 65 inches in order to balance out the mean. For instance, a possible (though unlikely) scenario for an 11-player soccer team could be $64,64,64,65,65,65,65,65,65,65,68$. In this case, exactly 3 players are less than 65 inches, exactly $\mathbf{1}$ player is more than 65 inches, and the mean is still 65 .
$2 \sqrt{13}$ un.
6. In relation to Point A, B is exactly 3 horizontal units to the right, and C is exactly 1 horizontal unit to the left. Therefore, Points B and C are exactly 4 horizontal units apart. Similarly, in relation to Point A, B is exactly 2 vertical units below, and C is exactly 4 vertical units above. Therefore, Points B and C are exactly 6 vertical units apart. This creates a right triangle with base 4 and height 6 , so $d=\sqrt{4^{2}+6^{2}}=\sqrt{16+36}=\sqrt{52}=2 \sqrt{\mathbf{1 3}}$.
$n=-14$
7. Use two ordered pairs to determine the slope: $\frac{3.5-(-1.5)}{1-3}=\frac{5}{-2}=-2.5$.

So, equation of function is $y=-2.5 x+b$.
Use one ordered pair to determine $b:-9=-2.5(6)+b \rightarrow b=6$
So, equation of function is $y=-2.5 x+6$. Find y-value when $x=8: y=-2.5(8)+6=-14$
43
8. $16 \mathrm{~S}+24 \mathrm{~L} \geq 1500 ; 16(30)+24 \mathrm{~L} \geq 1500$
$24 L \geq 1020 ; L \geq 42.5$; Abby must sell at least 43 large wreaths to raise $\$ 1500$.
3.75
9. Mean: $(3+7+8+12+12+14+15+17) / 8=88 / 8=\underline{11}$

Also accept:
33/4. 15/4
$(11-3)+(11-7)+(11-8)+(12-11)+(12-11)+(14-11)+(15-11)+(17-11)=$ $8+4+3+1+1+3+4+6=30 ; 30 / 8=3.75$
$y=3 x+6$ 10. Slope of perpendicular line must be +3 . So, $y=3 x+b$. Substitute ordered pair to find b. So, $-6=3(-4)+b ; b=6$. Therefore, $\boldsymbol{y}=3 \boldsymbol{x}+6$.

