

1. What is the greatest common factor of 48 and 78 ?
2. Write the expression in simplest radical form.

$$
\sqrt{108}
$$

$n=$ \qquad 3. The equation shows $\frac{1}{49}$ as the product of powers of 7 .

$$
\frac{1}{49}=7^{3} \times 7^{n}
$$

What value for n makes the equation true?
\qquad 4. Christy is helping to fill a tank with water. The tank is a rectangular prism that measures 8 feet wide, 11 feet long, and 6 feet deep. The tank is $\frac{1}{3}$ full of water. How much more water, in cubic feet, should Christy add to fill the tank completely?
5. Haakon, Andrew, Elijah, and Rose shared a pizza.

- Haakon ate 16% of the pizza.
- Andrew ate 50% more of the pizza than Haakon ate.
- Elijah ate 50% more of the pizza than Andrew ate.
- Rose ate the rest of the pizza.

What percentage of the pizza did Rose eat?
\qquad

Meet 3 - Event A

Answers

Questions are worth 2-2-2-4-4 points respectively.

\qquad 1.
\qquad 2. $\sqrt{108}=\sqrt{9 \times 12}=3 \sqrt{4 \times 3}=6 \sqrt{3}$
\qquad 3. $\frac{1}{49}=\frac{1}{7^{2}}=7^{-2}$
$7^{-2}=7^{3+n}=7^{3+(-5)}$
\qquad 4. $8 \times 11 \times 6=528$
$528 \times 2 / 3=352$

24\%
5. $\mathrm{H}: 0.16$

A: $1.5(0.16)=0.24$
E: $1.5(0.24)=0.36$
$R: 1-(0.16+0.24+0.36)=0.24=\mathbf{2 4} \%$

\qquad 1. What is the least common multiple (LCM) of 16 and 20 ?
$x=$
2. Solve for x. Write your answer as a reduced fraction.

$$
\frac{1}{4}(2 x+8)=1.5+4 x
$$

3. Evaluate the expression when $x=2$.

$$
\left(x^{2}+2 x+x^{3}\right)^{2} \cdot\left(x^{4}\right)^{-2}
$$

\qquad 4. A microscopic crystal is in the shape of a cube with an edge length of $8^{-5} \mathrm{~mm}$. What is the volume, in mm^{3}, of the crystal? Write your answer in exponential form using only positive exponents.
$w=$ \qquad 5. A figure is shown. The total surface area of the figure is 2,268 square inches.

$$
\underline{\mathrm{V}}=\quad \mathrm{in}^{3}
$$

- Find the width (w), in inches, of the figure.
- Find the volume (V), in cubic inches, of the figure.

\qquad

Meet 3 - Event B

Answers

Questions are worth 2-2-2-4-4 points respectively.

\qquad 1.

$$
x=1 / 7
$$

2. $\frac{1}{4}(2 x+8)=1.5+4 x ; \frac{1}{2} x+2=\frac{3}{2}+4 x ; \frac{1}{2}=\frac{7}{2} x ; \quad \boldsymbol{x}=\frac{\mathbf{1}}{7}$
\qquad 3. $\left(x^{2}+2 x+x^{3}\right)^{2} \cdot\left(x^{4}\right)^{-2}=(4+4+8)^{2} \cdot 16^{-2}$ $(16)^{2} \cdot 16^{-2}=16^{0}=\mathbf{1}$
$\frac{1}{8^{15}} \mathrm{~mm}^{3}$
3. $\left(8^{-5}\right)^{3}=8^{-15}=\frac{1}{8^{15}}$
$w=22$ in
4. $S A: 2\left(\frac{35 \times 12}{2}\right)+35 w+12 w+37 w=2268$
$S A: 420+84 w=2268 ; 84 w=1848 ; \boldsymbol{w}=22$
$\underline{\mathrm{V}=4,620 \mathrm{in}^{3}} \quad V:\left(\frac{35 \times 12}{2}\right) \times 22=210 \times 22=4620$
2 points per
response

Questions are worth 4 points each.

No calculators allowed

\qquad 1. A cube is painted red and then cut into 27 congruent cubes. How many of these cubes are painted red on exactly one face?
\$
2. Elsa has had her bank account for 2 years. During the first year, the amount of money in her account increased by 200%. During the second year, it decreased by 25%. If her account currently contains $\$ 450$, what was the amount of her initial deposit?
3. Simplify. Use only positive exponents in your answer.

$$
\frac{3 x^{-7} \cdot 4 x^{0}}{8 x^{3} \cdot x^{-2}}
$$

4. There are $10,300 \mathrm{~cm}^{3}$ of water in a cooler. Don completely fills cone-shaped cups with water from the cooler. Each cup has a radius of 3 cm and a height of 7 cm . What is the maximum number of cups Don can fill with the water from the cooler?
Use $\frac{22}{7}$ in your calculations for π.
5. Given $a^{1 / 5}=b$, what is the value of $a^{2 / 5}$?
6. How many diagonals does the nonagon have?
$x=$
7. Solve for x.

$$
-\frac{1}{3}(4-2 x)=\frac{5}{2} x+6
$$

\% 8. The speed of light is approximately 3×10^{8} meters per second. A comet is traveling at approximately 6×10^{4} meters per second. At what percentage of the speed of light is the comet traveling?
9. Selma and Tran each have a bag of blueberries. Selma's bag has 96 blueberries, and Tran's bag has 128 blueberries. They each divide their blueberries into equal-sized groups. What is the greatest number of blueberries that could be in both Selma's and Tran's groups?
10. Simplify: $\sqrt{135 x^{6} y z^{5}}$

Answers

Questions are worth 4 points each.

6 \qquad 1. Each face of the larger cube must have 9 congruent squares. Only the middle square will get painted on exactly one side. Since there are 6 faces, there are 6 such squares.

\$ 200
2. $x=$ initial deposit
$x+2 x=1^{\text {st }}$ year; $0.75(x+2 x)=2^{\text {nd }}$ year
$0.75(x+2 x)=450 ; 0.75(3 x)=450 ; 2.25 x=450 ; x=200$
$\frac{3}{2 x^{8}}$
3. $\frac{3 x^{-7} \cdot 4 x^{0}}{8 x^{3} \cdot x^{-2}}=\frac{3 \cdot 4 \cdot x^{2}}{x^{7} \cdot 8 x^{3}}=\frac{12 x^{2}}{8 x^{10}}=\frac{3}{2 x^{8}}$

156
4. Volume of each cup $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(9)(7)=21 \pi=21\left(\frac{22}{7}\right)=66$ $10300 \div 66=156 . \overline{06} \rightarrow$ Max cups $=156$
b^{2}
5. $a^{1 / 5} \cdot a^{1 / 5}=a^{(1 / 5+1 / 5)}=a^{2 / 5} ; b \cdot b=b^{2}$

27
6. From each vertex, 6 diagonals can be drawn. There are 9 vertices, so there are 54 possible diagonals. However, this number needs to be cut in
 half to avoid duplicating diagonals. (For instance, a diagonal drawn from vertex 1 to vertex 5 is the same as the diagonal drawn from vertex 5 to vertex 1.)

$$
x=-4
$$

7. $-\frac{1}{3}(4-2 x)=\frac{5}{2} x+6 ;-\frac{4}{3}+\frac{2}{3} x=\frac{5}{2} x+6 ;\left(\frac{2}{3}-\frac{5}{2}\right) x=6+\frac{4}{3} ;\left(\frac{4}{6}-\frac{15}{6}\right) x=\frac{18}{3}+\frac{4}{3}$ $\left(\frac{4}{6}-\frac{15}{6}\right) x=\frac{18}{3}+\frac{4}{3} ;-\frac{11}{6} x=\frac{44}{6} ; x=-4$
0.02 \%
8. $\frac{6 \times 10^{4}}{3 \times 10^{8}}=\frac{p}{100} ; 600 \times 10^{4}=\left(3 \times 10^{8}\right) p ; \frac{6 \times 10^{6}}{3 \times 10^{8}}=p$; $2 \times 10^{-2}=p ; \quad 0.02=p$

32
9. $\operatorname{GCF}(96,128)=32$

